
Applying 6 Sigma Roadmap for Improving Quality

Mohsen Shah Baghi 01/05/2015

Peugeot 405 Seat Production Process

3. Assembly of injected parts

6. Delivery

What is the Polyurethane Foam?

Mixing Process and Cream Time Gel Time

Rise Time

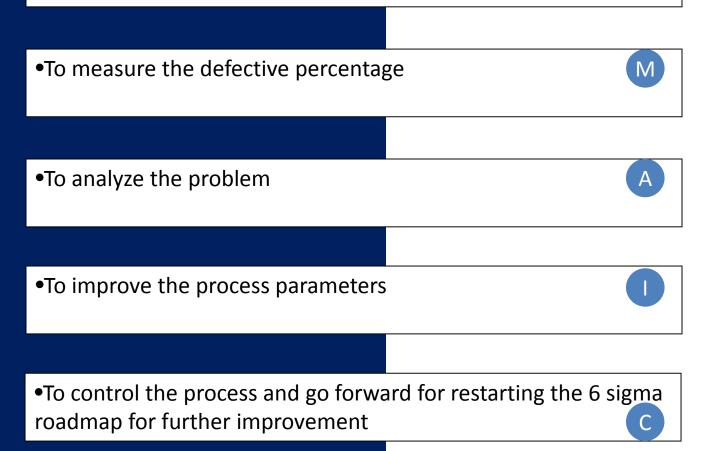
Curing Time

Why was this project conducted?

Poor continues flow

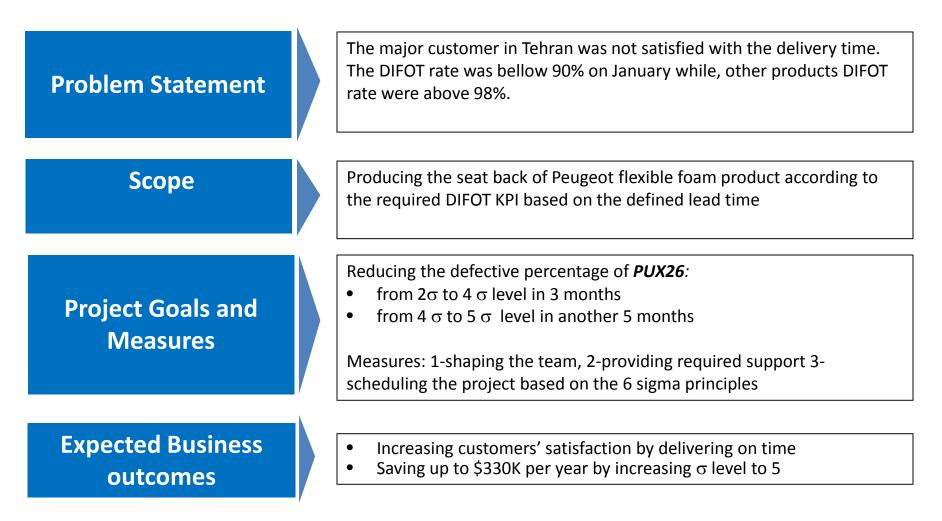
(Internal Problem)

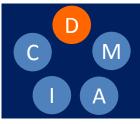
The defective percentage of *Peugeot 405 front seat back polyurethane flexible foam* (PUX26) was highest among other flexible foam products.


Poor DIFOT KPI

Delivered In-Full, On-Time

(External Problem)


Risk of loosing customers due to the poor delivery



Define Phase Project Charter

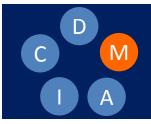
Measures in the Define Phase

- Champion (Sponsor): Vali Aslani (QA Manager and ISO TS admin)
- Green Belt : Mohsen Shah Baghi
- Shift managers, Shift production line supervisors
- Maintenance and reliability, Engineering, QA & QC units representatives and OH&S officers

Suppliers	Inputs	Process	Output	Customer	
External suppliers	Raw material	Set up	Production report	Internal Dep. and units	
Production planning unit	Production plan	Production steps: Mixing components			
Engineering Dep.	Machines, molds and equipments	-Chemical reaction and Curing -Demolding and pressing	PUX26	Car	
Maintenance Dep.	Energy	-Trimming and repairing	Parts	manufacturer	
Quality assurance and control Dep.	Technical documents, records and reports	Final control and stock			

Business Need	Drivers	Business Big Y's	Process y's
Fulfilling the	- Improving DIFOT KPI	- increasing reliability	- Improving OEE KPI
external and internal customers' needs	 Producing products in an acceptable quality and time 	 Reducing raw material consumption 	- Optimizing the new material formulation
	- Reducing cost	- Reducing operational cost	 Reducing defects & material waste

SIPOC


CTQ Tree

Team Members

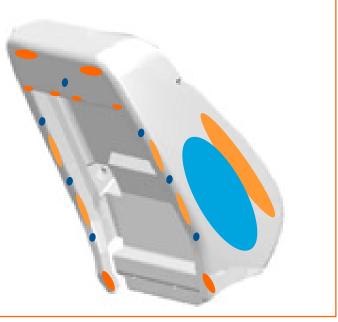
Data Collection Plan

Sub Process step	What	Data type	How Measured	Sampling notes	Sample size	Frequency	Who
mold preperation sub process	Mold Temperature	Continouos	Refer to the quality manual	Day- Night shift	250	Sampling in	
Injection sub process setup	lso Temp	Continouos	Refer to the quality manual	Day- Night shift	250		
Injection sub process setup	Poly Temp	Continouos	Refer to the quality manual	Day- Night shift	250		
Injection sub process setup	Polyol Pressure	Continouos	Refer to the quality manual	Day- Night shift	250		Qualified QC
Injection sub process setup	Iso Pressure	Continouos	Refer to the quality manual	Day- Night shift	250	-	Controller officer
Injection sub process setup	Poly Ratio	Continouos	Refer to the quality manual	Day- Night shift	250		
Injection sub process setup	Product weight	Continouos	Refer to the quality manual	Day- Night shift	250		
QC sub process	Defects	Discerete	Refer to the quality manual	Day- Night shift	250		

Data Analyzing Defect Concentration Diagram

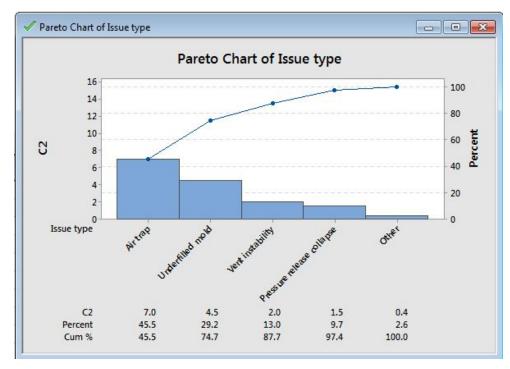
Product code:	PUX26	Date:21/09/2005				
Opportunities	Total number of samples	The total no. of opportunities	Defects	DPMO	Z _{ST}	Z _{LT}
26	250	6500	98	15076	3.67	2.17

Air Trap


Under Filled Mould

Vent Instability

P.R.C



Back side

Data Analyzing Defect Concentration Diagram

5 Y's Analysis for Air trap problem:

Y1: Foam skin development prior air evacuation

Y2: Cream and Gel time is not appropriate

Y3: Iso and Polyol formulation

Y4: Mechanical adjustment

Y5: Mold temp Iso & Poly Temp Pour Pattern Vent type

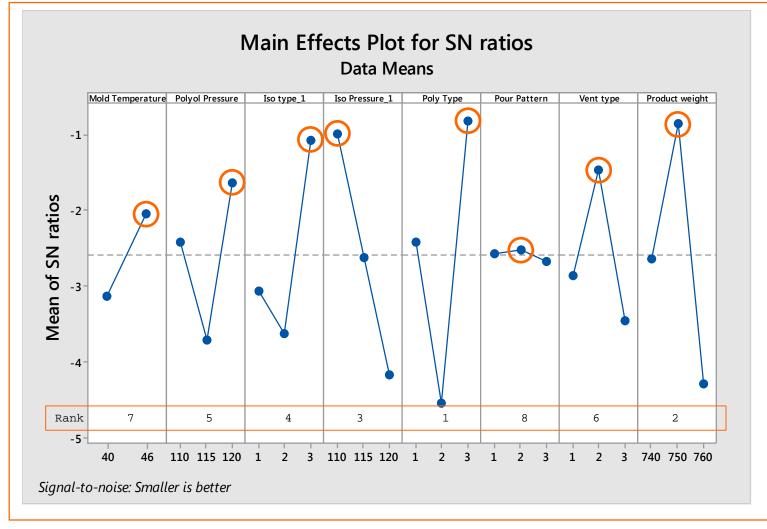

D **Analysis Phase** Μ С **Design of Experiment** A Controllable factors POSSIBLE CAUSES by silicone or grease lubricants socyanate used is high d/ar size of vent holes luring liquid laydown water in air supply polyal used is high nd / or polyol Input Process Output o and polyol ie metering mponents om polyol gelation vol ot ions P

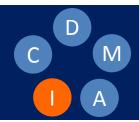
Uncontrollable factors

PROBLEMS	Low temperature of iso a	Substrate temperature to	Loss of blowing agent fro	Off ratio - the amount of	Insufficient mixing	Moisture in the polyol	Off ratio - the amount of	Moisture in the substrate	Moisture contamination -	Check for contamination	Check polyol reactivity	Raise temperatures of is	Look for errors in machin	Catalyst deactivation	Check for lead/lag condit	Mould temperature	Release agent quality	Wax-build-up	Optimize pour pattern an	Tilt the mould when pour	Shot size	Increase rate of polymer	Reduce air entrapment d	Lower temperature of co
Density is high																								
Density is low																								
Underpacked cavity																								
Friable- crumbles and lacks strength																								
Voids																								
Foam is slow to cure																								

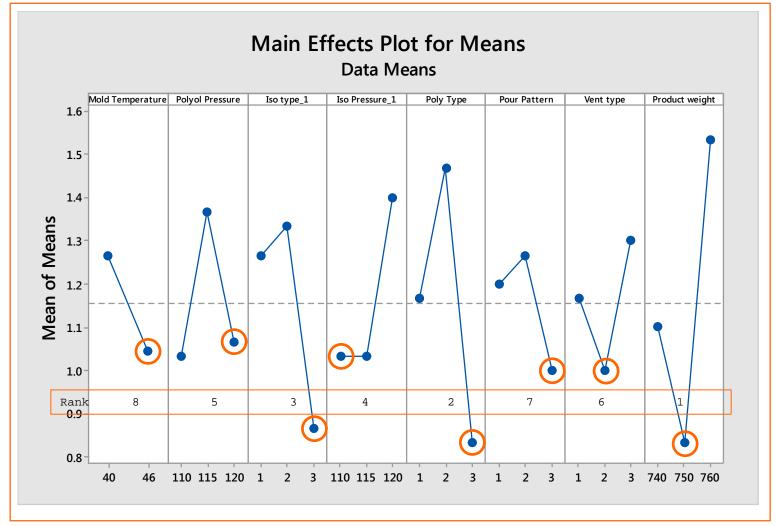
1	2	3	4	5	6	7	8
Mold Temperature	Polyol Pressure	lso type	Iso Pressure	Poly type	Pour Pattern	Vent type	Product weight
40	110	1	110	1	1	64.5	740
46	115	2	115	2	2	66	750
	120	3	120	3	3	67.5	760

Number of experience in full factorial experiment: 2×3×3×3×3×3×3×3=4374

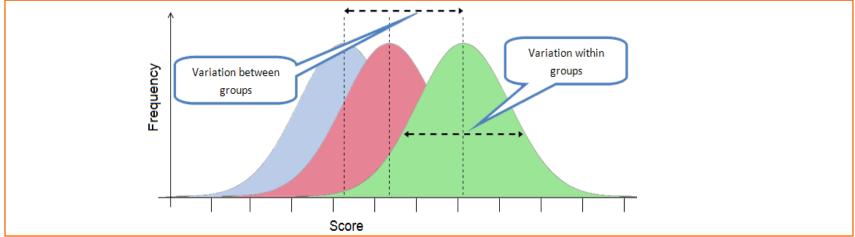


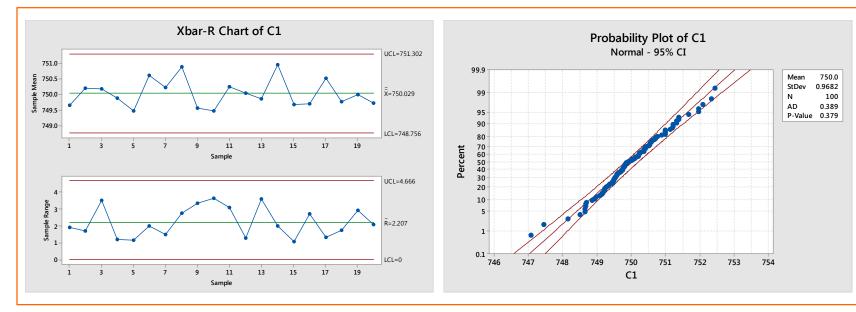

Analysis Phase Taguchi Method

÷	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13
	Mold Temperature	Polyol Pressure	Iso type_1	Iso Pressure_1	Poly Type	Pour Pattern	Vent type	Product weight	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5
1	40	110	1	110	1	1	1	740	1	2	1	1	0
2	40	110	2	115	2	2	2	750	2	0	2	0	1
3	40	110	3	120	3	3	3	760	3	1	0	1	0
4	40	115	1	110	2	2	3	760	2	2	3	3	2
5	40	Tagu	chi Ana	lysis: Sam	ple 1, S	ample 2,	versi	us Mold Te	mpera	, Polyol	Press,	•••	
6	40			,	•	• •			•				
7	40	-		e for Sign	al to N	oise Ratio	S						
8	40	Small	er is be	etter									
9	40				olyol			Iso		Pour			coduct
10	46	Level	- L -		.4104	1so type_1 -3.0574				Pattern -2.5734	Vent t -2.8		veight 2.6313
11	46	2		2.0430 -3	.7167	-3.6288	-2	.6150 -4	.5409	-2.5233	-1.4	537 -0	0.8404
12	46	3 Delta	1		.6373	-1.0782 2.5506			.8131 .7278	-2.6677	-3.4		1.2927 3.4523
13	46	Rank		7	5	4		3	1	8	1.2	6	2
14	46												
15	46	Respo	nse Tabl	e for Mean	s								
16	46			Mold F	olyol			Iso		Pour		D-	roduct
17	46	Level	Temper		-	Iso type_1	Press		Туре	Pour Pattern	Vent t		veight
18	46	1			.0333	1.2667 1.3333			.1667 .4667	1.2000 1.2667			L.1000).8333
		3	L		.0667	0.8667			. 4667	1.2007			L.5333
		Delta			.3333	0.4667			.6333	0.2667	0.3		.7000
		Rank		8	5	3		4	2	7		6	1



Analysis Phase Taguchi Method





Analysis Phase Taguchi Method

Outcome of the Study

Reducing defective percentage of PUX26 from 17% to below 1% in 3 months and 0.1% in another 2 months

Selected projects and actions:

- Performing MSA project on dosing system and increasing process capability above 5σ
- Designing new vent to reduce martial scrap
- Reducing variations in mold temperature
- Analysing the pour pattern
- Performing FMEA
- Running DOE using Taguchi method
- Performing DOE using full factorial analysis
- Study validating
- Using SPC (statistical process control) to control the key process parameters

Suggestions for future study:

- Using 3 mixing head for pouring 2 arms and body of back seat foam at the same time
- Working on other priorities which was highlighted on FMEA

Applying 6 Sigma Roadmap

for Improving Quality

Thank You!

Mohsen Shah Baghi mohsen.shahbaghi@gmail.com

Mobile number: 0469 781 758